Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy.
نویسندگان
چکیده
Chronic myeloid leukemia and systemic mastocytosis are myeloid neoplasms sharing a number of pathogenetic and clinical features. In both conditions, an aberrantly activated oncoprotein with tyrosine kinase activity, namely BCR-ABL1 in chronic myeloid leukemia, and mutant KIT, mostly KIT D816V, in systemic mastocytosis, is key to disease evolution. The appreciation of the role of such tyrosine kinases in these diseases has led to the development of improved therapies with tyrosine kinase-targeted inhibitors. However, most drugs, including new KIT D816V-blocking agents, have failed to achieve long-lasting remissions in advanced systemic mastocytosis, and there is a similar problem in chronic myeloid leukemia, where imatinib-resistant patients sometimes fail to achieve remission, even with second- or third-line BCR-ABL1 specific tyrosine kinase inhibitors. During disease progression, additional signaling pathways become activated in neoplastic cells, but most converge into major downstream networks. Among these, the AKT and STAT5 pathways appear most critical and may result in drug-resistant chronic myeloid leukemia and systemic mastocytosis. Inhibition of phosphorylation of these targets has proven their crucial role in disease-evolution in both malignancies. Together, these observations suggest that STAT5 and AKT are key drivers of oncogenesis in drug-resistant forms of the diseases, and that targeting STAT5 and AKT might be an interesting approach in these malignancies. The present article provides an overview of our current knowledge about the critical role of AKT and STAT5 in the pathophysiology of chronic myeloid leukemia and systemic mastocytosis and on their potential value as therapeutic targets in these neoplasms.
منابع مشابه
Signaling pathways involved in chronic myeloid leukemia pathogenesis: the importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells
Objective(s): Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential ...
متن کاملAKT family and miRNAs expression in IL-2-induced CD4+T cells
Objective(s): Study of non-coding RNAs is considerable to elucidate principal biological questions or design new therapeutic strategies. miRNAs are a group of non-coding RNAs that their functions in PI3K/AKT signaling and apoptosis pathways after T cell activation is not entirely clear. Herein, miRNAs expression and their putative targets in the mentioned pathways were studied in the activated ...
متن کاملSingle Cell Phospho-Signaling Analysis in Myeloid Malignancies
Abnormal hematopoietic stem/progenitor cell (HSPC) signaling is a hallmark of leukemic hematopoiesis and a common denominator in the pathobiology of all types of myeloid malignancies. The most studied pathways are the JAK/ STAT, MAPK/ERK and PI3K/AKT cascades [1]. Constitutive activation of STAT molecules has been reported in almost all myeloid malignancies. Basal STAT3 and less often STAT5 lev...
متن کاملRole of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line
Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...
متن کاملOvatodiolide targets chronic myeloid leukemia stem cells by epigenetically upregulating hsa-miR-155, suppressing the BCR-ABL fusion gene and dysregulating the PI3K/AKT/mTOR pathway
Chronic myeloid leukemia (CML) is a myeloproliferative pathology, originating from the hematopoietic cancer stem cells (hCSCs) due to the Bcl-Abl Philadelphia chromosome transformation. However, targeting these hCSCs as an effective anti-CML strategy is relatively less explored. Ovatodiolide (Ova) is a natural diterpenoid isolate of Anisomeles indica with broad anticancer activity. In this stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Haematologica
دوره 99 3 شماره
صفحات -
تاریخ انتشار 2014